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1. Introduction

In [3]. Park discusses notions of strong and weak fairpess in the execution of guarded
iterations. These concerns are also considered in (1] and [2]. We show that any “strongly fair”
scheduling algorithm for n processes requires at least n! storage states (i.e. space proportional to
n log n). Similarly, any “weakly fair” scheduling algorithm requires at least n storage states.

Both bounds are optimal.

For our present purposes we may define a acheduler as a transducer A with an input alphabet
of symbols corresponding to the non-empty subsets of {1, ..., n} and output alpbabet {1, .... n}.
It has the property that for each symbol input the generated output symbol is an element of the
corresponding subset. We may regard each input symbol as requests for service from some subset
of n processes and the output given by A as the scheduler's choice of which one of these to serve.

We consider infinite runs of such a scheduler.
A scheduler is

1. strongly fair if each process which requests service infinitely often is served
infinitely often, and _

2. weakly fair if each process which requests service all but finitely often is served
infinitely often.

Thus at any time in a strongly (weakly) fair schedule any process will eventually be served if
it requests service infinitely (continuously) from that time. Park's example of a strong scheduler
in [P] keeps the processes in a queue. At each step it serves that requesting process which is
earliest in the queue and then sends this process to the back of the queue. That this provides
strongly fair scheduling is easy to see since when apy process is unsuccessful in its request it
advances one position in the queue. Park expresses disquiet at the implementation overbeads for

such a scheduler.

By contrast, he shows a simple economical weakly fair scheduler. A counter with values in
{1, ..., n} is maintained. At each step the counter is incremented modulo b until it reaches the
pumber of a process requesting service. This process is then served.

We shall show that both of the schedulers given by Park are optimal in their use of storage

space.
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2. Main Results
Theorem 1. Any strongly fair scheduler for n processes has at least n! states.

Proof. For each i, let P, be the set of scheduler states with the property that the next time
process i requests service it will indeed be served.

Lemma 1. Fori # j, Pin l:’j = .

Proof. Ap immediate request for service by processes i and j would be an irreconcilable
conflict for any state in P, N Pj. (n}

Lemma 2. Foralli, P, # ¢.

Proof. Suppose P, == ¢. Since the initial state is ot in P;, there is some sequence w, of
inputs ending in a request from process i such that process i is not served during w,. Since the
resulting state is also not in P;, the same reasoning produces a continuation w, with the same
property. In this way we can show the existence of an infinite sequence of inputs W, %, Wy, iD
which i requests service infinitely often but is never served. This contradicts strong fairness. O

Lemma 3. The set of states P, is closed under the transitions effected by i-free inputs.
Proof. Immediate from the definition of P,. D

The proof of Theorem I now proceeds by induction on n. The result is trivial for n = 1. Let
us suppose the result holds for n-1 processes and consider the case of n processes.

Witk Lemma 2 in mind, consider any s, € P,. With s; as an initial state and allowing only
i-free inputs, we find that we have a strongly fair scheduler for {1, ..., n} ~ {i}. This follows
from the strong fairness of the original scheduler. By the inductive hypothesis this strongly fair
(n = 1)scheduler uses at least (n — 1)! states, and by Lemma 3 all these states are in P.. Hence
[P;| 2 (n ~ 1)!. Since this inequality holds for each i, we have, using Lemma 1, that the original
scheduler has at least n! states. O

Thus Park’s strongly fair scheduler is optimal in its storage requirement. Indeed the
naturalness of his queuing structure is supported by an analysis of the proof technique above. In
a patural way we can associate with every permutation of the processes a disjoint non-empty
subset of the scheduler states.

We close with a minor result, analogous to Theorem I.

Theorem II. Any weakly fair scheduler for n processes has at least n states.
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Proof. Conpsider the {constant) input sequence in which each process requests service at
every step. If the scheduler has fewer than n states, its resulting ultimately periodic behaviour
bas period less than n and so fails to serve some processor. O
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